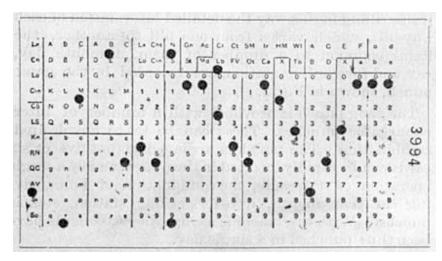
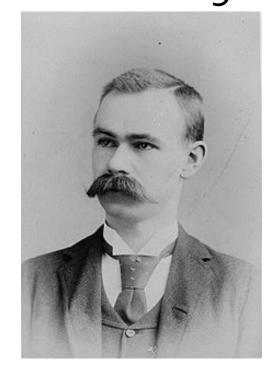
"Digits" does not refer only to your 10 fingers...

Digitization & Processing

Used with permission from Lawrence Snyder University of Washington, Seattle

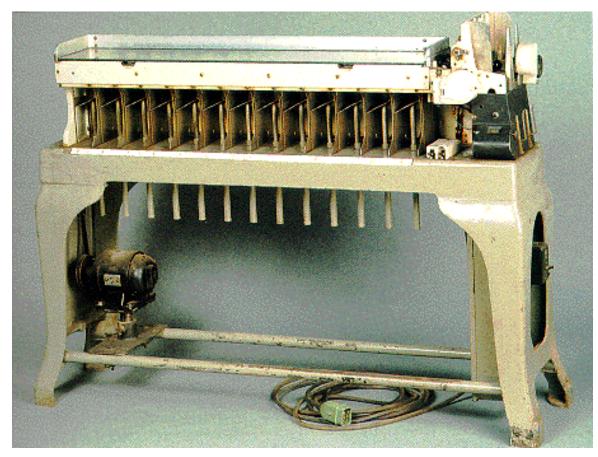

A Short History of Digital Info

- One goal of CS Principles is to understand how computers and digital information are "game changers," how they *create* opportunities
- I will do that by highlighting the progress of "data processing" over the last 120 years or so
 - (it's very incomplete)
 - Digitization, computers, ICs, transistors, PCs, Internet, and WWW are key
 - Focus on advances since …



The Problem with Writing ...

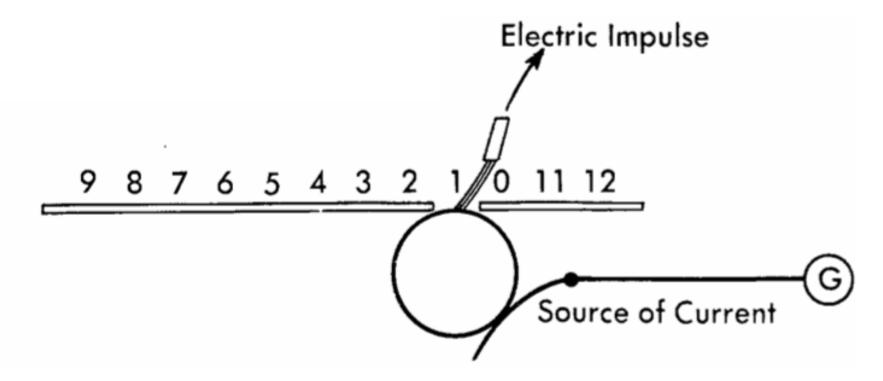
Only people can read it ... [Though recently, some progress in handwriting analysis has occurred; limited use.]
First serious advance in digitization: punch cards
Herman Hollerith develops idea for 1890 census



Hollerith Card, Courtesy IBM

Machines Process Digital Data

 Mechanical methods – sensing a hole in a card or not – allows machines to help w/work


^{© 2010} Larry Snyder, CSE

No Computer Needed To Process Data

A mechanical machine can "read" a card with ... a "metal brush" Punched Hole 2 65 8 7 4 Card Contact Movement Roll Source of Current Card

Sensing Punch Allows Some Action

 When the circuit closes, some mechanical action can happen

Computing w/o Computers

Suppose Hollerith coded men as o, women a 1

How many men and women in the population?

card counter

Machine Reads Cards, Puts women in this slot — Puts men in this slot — ... producing 2 piles Run each pile through again just to count them -- done

census data

Meanwhile, w/o Digital Data

 Poor Kermit must go through census sheets, counting (and probably making mistakes)

The message: "Digitizing" makes information discrete, it's either there (1) or not (0), and a machine can determine that fact using mechanical or electronic means. Once data is digital, it is just a matter for engineers to build more capable machines

Writing As Important As Reading

 After processing based on reading cards, a machine can "save its work" by punching cards Punch punching mechanism Card Stripper А Die В Staying Digital

^{© 2010} Larry Snyder, CSE

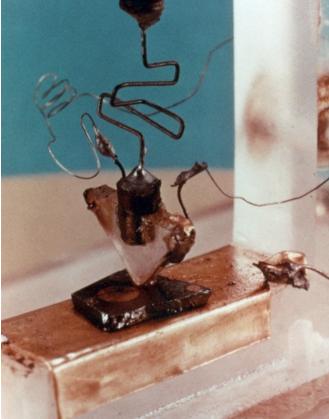
Next Big Things ... Very Big!

Electronic computers came after WWII

^{© 2010} Larry Snyder, CSE

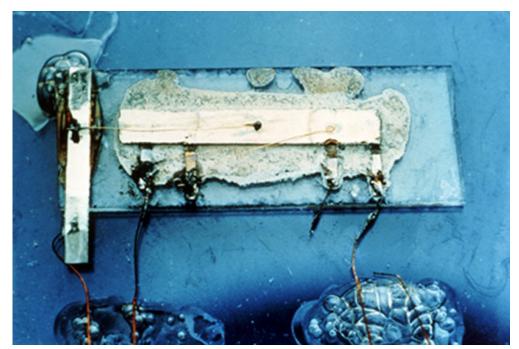
By Mid 20th Century ~ 1960

- Large and medium-size companies used card based digital data; mechanical processing
- Computers began to replace mechanical b/c a computer's "processing instructions" (program) could be easily changed, & they perform more complex operations – flexibility
- Computers, memory much more expensive this sets conditions for the "Y2K Problem"
 Message: Computers take the task specification (program) and digital data as inputs, making them very versatile machines; one machine does it all! Programming becomes critical technology.


Key to Modern "Computers"

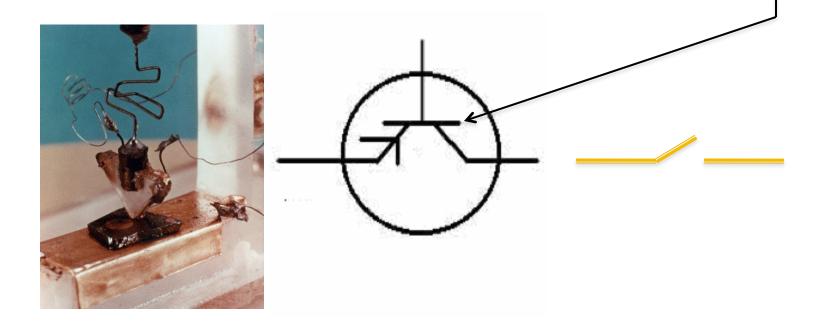
The key difference between the early tabulating machines and modern computers is

- A. mechanical vs electrical
- B. non-programmable vs programmable
- C. decimal vs binary
- D. all of the above


Next Big Things: Integrated Circuits

- Transistors solid state switching
- Integrated Circuit all circuit parts fabbed at

1st transistor

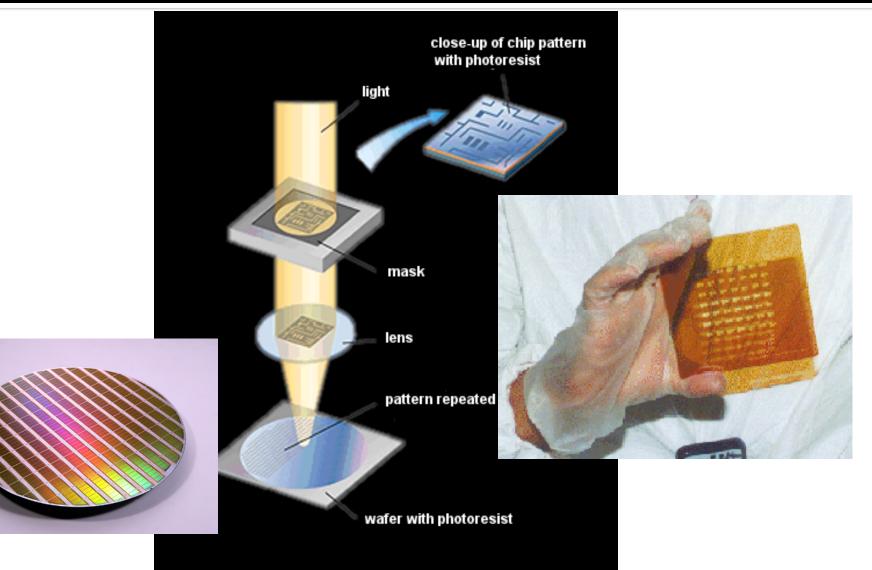


1st integrated circuit

© 2010 Larry Snyder, CSE

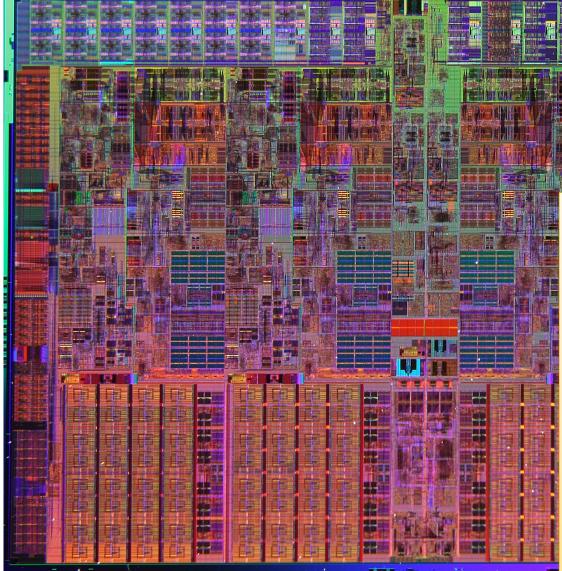
Solid State Electronics

 A transistor is a switch: If the gate (black bar) is neutral, charge cannot pass; if gate is charged, the wires are connected



Solid State Electronics

- Transistors are smart, but "wiring them up" with other parts was labor intensive
- Integrated circuits transistors + resistors + capacitors are created together in one long recipe small, cheap, reliable
- Key fabrication process is *photolithography* – the transistors are "printed" on the silicon!



Photolithography

© 2010 Larry Snyder, CSE

Integrated Circuits

Message: Transistors switch wires on and off in solid material (no moving parts to wear out) and ICs are fabbed as a unit (no wiring) and using photolithography - complexity of circuit doesn't matter! We can all have a computer.

^{© 2010} Larry Snyder, CSE

Transistors

A transistor is most like

- A. A hole (or lack of) in a punched card
- B. A light switch
- C. An entire punched card with multiple holes
- D. A whole bank of light switches

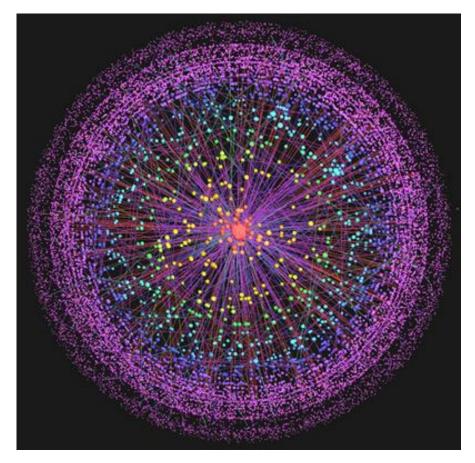
Next Big Thing: Personal Computers

Ken Olsen, Founder of Digital Equipment, "There is no reason for any individual to have a computer in their home [1977]"

^{© 2010} Larry Snyder, CSE

Computing Comes To Everyone

- Regular folks not just government, military, scientists, banks and companies – could now apply computers to their interests
- Created a demand for digital data: news, pics, audio, video, books, etc., causing old technologies to digitize rapidly. Now it matters to everyone if a machine can "read" it
- From about 1985 most "new" information has been digital
- Quickly, people acquired enormous amounts of information


Digital Rocks

Message: Computers can be easily transformed to do new things, and being cheap, we can all have some, motivating us to want digital everything

100110000

Next Big Thing: Internet

Invented in 1969, it took almost 20 years to get out of the lab and into public consciousness

"On the Internet, nobody knows you're a dog."

© 2010 Larry Snyder, CSE

Connecting Up

- Computers are useful; connected computers are awesome
- If n computers are connected, adding one more gives n new connections!
- Communication with friends or businesses all over the world became easy and casual – some people even found out about time zones
- Digital media allows people to share each other's information at no cost

Connectivity to Change the World

Message: The Internet is a general mechanism to communicate digital data – it doesn't matter what it is: music, email, video ...

Next Big Thing: WWW + http

 Today, all computers "speak" a common language: hyper-text transfer protocol

WWW Is The Servers + The Data

- Two phenomena make the WWW brilliant
 - All computers use one standard protocol (http) meaning for once all of the world's people – who don't speak one language – have a surrogate that does
 - Publishing and accessing information is completely decentralized – generally, no one limits what you put out or go after

Seeing Other People's Digital Info

Message: WWW exploits one protocol, neutralizing differences at endpoints; the Internet's universal medium lets us look at other people's digital info

PDA

Web browserMedia playerWifi

Smartphones

Simon – credited as first smartphone (telephone+ PDA)

- Calls
- Faxes
- Email

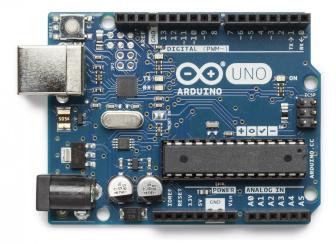
First major smartphone success was in Japan in 1999 by NTT DoCoMo.

iPhone & Android Devices

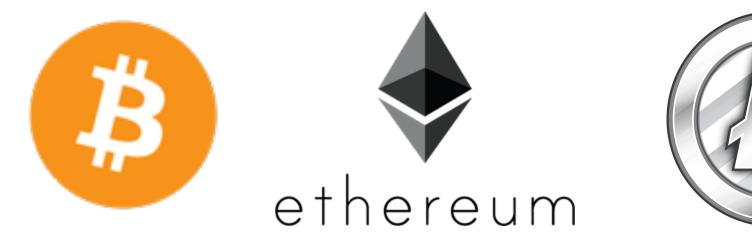
iPhone 1st gen (2007)

HTC Dream (2008)


Social Media


- Generally defined as:
 - interactive Web 2.0 Internet-based applications
 - User generated content
 - Users have profiles
 - Profiles interact with other profiles

DIY Computing


- Putting together components to build a full functioning computer
- Building apps for smartphones
- Programming Rasperry Pi and Arduino

Cryptocurreny

- Digital Currency using Blockchain technology
- Transactions are public, but users are encrypted
 - Transactions require fee to pay for mining, thus incentivizing blockchain update

So, It All Works Because of Digital

- Key principle of digital encoding: Physically, information is the presence or absence of a phenomenon at a given place and time!
- Card example:
 - Phenomenon hole in the card
 - Present detected by brush making elec contact
 - Absent brush insulated from electrical source
 - Place there are several on the card; devices can know the positions
 - Time hole is permanent representation of info

A General Idea

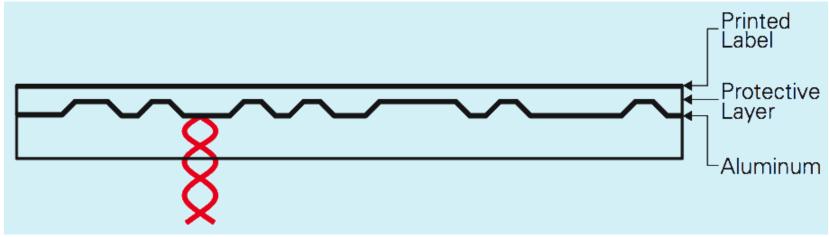
- Digital Information: Detecting the presence or absence of a phenomenon at a specific place and time: PandA
- Phenomena: light, magnetism, charge, mass, color, current, ...
- Detecting depends on phenomenon but the result must be discrete: it was detected or not; there is no option for "sorta there"
- Place and time apply, but usually default to "obvious" values; not so important to us

Digital Discussion

Alternatives to detecting the hole in a card

Digital Discussion

Alternatives to detecting the hole in a card
Sidewalk Memory – squares and rocks



Digital Discussion

Alternatives to detecting the hole in a card
Sidewalk Memory – squares and rocks

• Other phenomena ... CD ROM how it works:

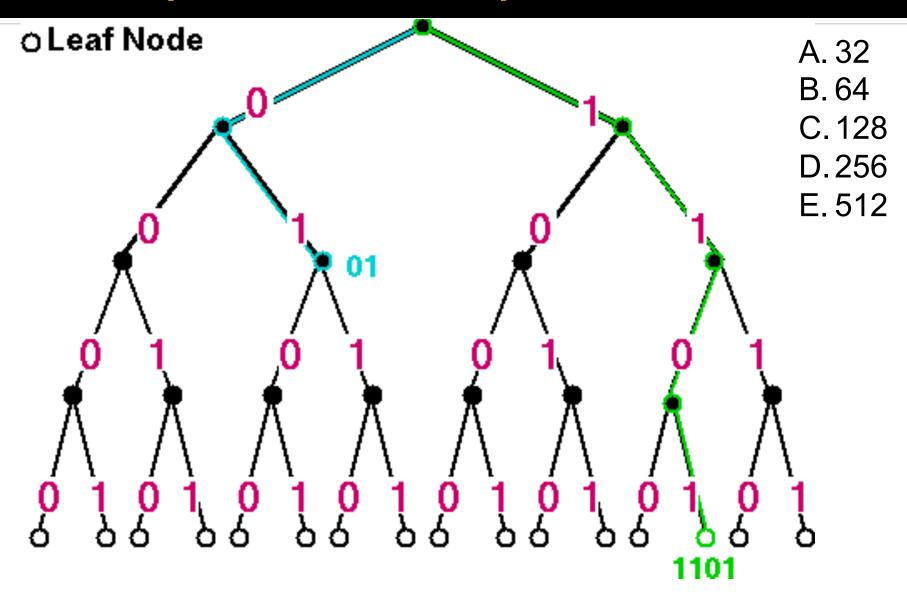
- PandA is a *binary representation* because it uses 2 patterns
 Bit -- it's a contraction for "binary digit"
 - -- a position in space/time capable of being set and detected in 2 patterns

Bytes: Standard encodings of meaning

- A byte is eight bits treated as a unit
 - Adopted by IBM in 1960s
 - A standard measure ever since
 - Bytes encode the Latin alphabet using ASCII -- the American Standard Code for Information Interchange

ASCII

0100 0011 0100 0001 0101 0100



ASCII	0 0 0 0	0 0 0 1	0 0 1 0	0 0 1 1	0 1 0 0	0 1 0 1	0 1 1 0	0 1 1 1	1 0 0 0	1 0 0 1	1 0 1 0	1 0 1 1	1 1 0 0	1 1 0 1	1 1 1 0	1 1 1 1
0000	NU	s _н	s _x	^в х	ET	ĔΩ	^А к	BL	^B s	н _т	L _F	Υ _T	FF	с _к	s ₀	s _I
0001	DL	D 1	D_2	D3	D_4	N _K	s _y	ε _Σ	с _N	Ем	s B	Ec	Fs	G _S	R S	U _S
0010		!	"	#	\$	0/0	&	I	()	*	+	,	-	•	/
0011	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0100	@	A	В	С	D	Е	F	G	Н	I	J	K	L	М	Ν	0
0101	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ	[\backslash]	^	_
0110	`	a	b	С	d	е	f	g	h	i	j	k	1	m	n	0
0111	р	q	r	ន	t	u	v	w	x	У	z	{		}	~	Рт
1000	⁸ 0	⁸ 1	⁸ 2	83	I N	NL	s s	Е _S	н _s	н	۲ _s	PD	Pv	R _I	s ₂	s ₃
1001	^D с	Р ₁	۴z	s _E	сc	мм	s _p	Е _Р	а ₈	م	٩	с _s	^s т	°s	Рм	Р
1010	^A o	ī	¢	£	Ŷ	¥	I I	S		©	ď	«	~	-	R	-
1011	0	±	2	3	1	μ	¶	•	L	1	0	»	1⁄4	1/z	3/4	Ŀ
1100	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ï
1101	Ð	Ñ	Ò	Ó	Ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	β
1110	à	á	â	ã	ä	å	æ	Ç	è	é	ê	ë	ì	í	î	ï
1111	x	ĩ	à	4	â	ĩ	ä	<u> </u>	~	J.	14	ŵ	ü	4	ь	77

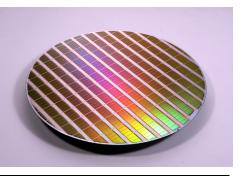
0100 0111 0110 1111 0010 0000 0101 0011 0110 1100 0111 0101 0110 0111 0111 0011

© 2010 Lawrence Snyder, CSE

With 8 places how many different letters?

UTF-8: All the alphabets in the world

- Uniform Transformation Format: a variable-width encoding that can represent every character in the Unicode Character set
- **1,112,064 of them!!!**
- http://en.wikipedia.org/wiki/UTF-8
- UTF-8 is the dominant character encoding for the World-Wide Web, accounting for more than half of all Web pages.
- The Internet Engineering Task Force (IETF) requires all Internet protocols to identify the encoding used for character data
- The supported character encodings must include UTF-8.


لماذا لا يتكلمون اللّغة العربية فحسب؟ Защо те просто не могат да говорят български? Per què no poden simplement parlar en català? 他們爲什麼不說中文(台灣)? 🖻 🖲 Proč prostě nemluví česky? Hvorfor kan de ikke bare tale dansk? Warum sprechen sie nicht einfach **Deutsch**? Μα γιατί δεν μπορούν να μιλήσουν Ελληνικά; 🕙 Why can't they just speak English? ¿Por qué no pueden simplemente hablar en castellano? Miksi he eivät yksinkertaisesti puhu suomea? Pourquoi, tout simplement, ne parlent-ils pas français ? 🕙 למה הם פשוט לא מדברים עברית? Miért nem beszélnek egyszerűen magyarul? Af hverju geta þeir ekki bara talað íslensku? Perché non possono semplicemente parlare italiano? なぜ、みんな日本語を話してくれないのか? 🖻 세계의 모든 사람들이 한국어를 이해한다면 얼마나 좋을까? 🖻 Waarom spreken ze niet gewoon Nederlands? Hvorfor kan de ikke bare snakke norsk? Dlaczego oni po prostu nie mówią po **polsku**? 🕙 Porque é que eles não falam em Português (do Brasil)? Oare ăștia de ce nu vorbesc românește? Почему же они не говорят по-русски? Zašto jednostavno ne govore hrvatski? Pse nuk duan të flasin vetëm shqip? Varför pratar dom inte bara svenska? 🕙 ทำไมเขาถึงไม่พูดภาษาไทย Neden Türkce konuşamıyorlar?

Recap: Next Big Thing

- Electronic Computers
- Integrated Circuits
- Personal Computers
- Internet
- WWW + http
- Smartphones

