
Based	on	slides	from	
Lawrence	Snyder	
University	of	Washington,	Seattle	

© Lawrence Snyder 2004

What can a computer be commanded to do?

¡  Computers	seem	to	run	really	fast	…	except	
when	they	don’t	
§  Usually	we	don’t	know	why	
§  Often	it	is	communications	congestion	on	the	net	
§  Other	times,	when	saving	files,	say,	we’re	waiting	
for	the	hard	disk	to	copy	everything	

¡  Often	the	time	a	computer	takes	to	solve	a	
problem	is	proportional	to	how	much	data	
there	is	…	more	pixels,	more	time	to	process	

© 2010 Larry Snyder, CSE 2

¡  CS	folks	say	that	problems	whose	work	is	
proportional	to	n	are	n-time	or	linear	time		
§ Making	an	image	lighter	in	your	photo	software		
§  Adding	a	column	of	numbers	in	a	spreadsheet	
§  Crawling	the	Internet	looking	for	links	
§ …	many	more	…	linear	problems	are	common	

¡  Apparently	some	problems	are	not	…	

© 2010 Larry Snyder, CSE 3

¡  Guess	a	number	between	1	and	100.	How	
many	guesses	do	you	need?	

¡  Scatter	a	deck	of	cards	on	the	floor.	How	
many	do	you	have	to	turn	over	to	find	the	ace	
of	spades?	

4

¡  Putting	a	sequence	of	items	into	alphabetical	
or	numerical	order	

walrus		seal		whale		gull		clam	
	
Algorithm:	compare		
to	all	following	items	,		
reorder	if	needed	
	
¡  Other	ways	to	sort	

© 2010 Larry Snyder, CSE 5

wa se wh g c
se wa wh g c
g wa wh se c
c wa wh se g
c wa wh se g
c se wh wa g
c g wh wa se
c g wa wh se
c g se wh wa
c g se wa wh

¡  Putting	a	sequence	of	items	into	alphabetical	
or	numerical	order	

walrus		seal		whale		gull		clam	
	
Algorithm:	compare	adjacent	
items,	reorder	if	needed	

	
Bubble	sort	has	n2	Time	
	

© 2010 Larry Snyder, CSE 6

wa se wh g c
se wa wh g c
se wa wh g c
se wa g wh c
se wa g c wh
se wa g c wh
se wa g c wh
se g wa c wh
se g c wa wh
se g c wa wh
g se c wa wh
g c se wa wh
g c se wa wh
c g se wa wh

¡  The	pattern	is,	for	n	items	
n-1	focus	on	first	time	
n-2	focus	on	second	item	
n-3	focus	on	third	item	
…	
1	on	next	to	last	

n-1	rows	in	list,	avg	of	each	
row	is	n/2,	so	(n-1)×n/2	
					=	(n2	–	n)/2	
¡  Time	proportional	to	n2	

© 2010 Larry Snyder, CSE 7

wa se wh g c
se wa wh g c
g wa wh se c
c wa wh se g
c wa wh se g
c se wh wa g
c g wh wa se
c g wa wh se
c g se wh wa
c g se wa wh

¡  Is	there	a	better	way	to	do	sorting?	

¡  QUICKSORT
§  Fastest known sorting algorithm in practice
§  Average case: O(N log N) (we don’t prove it)
§  Worst case: O(N2)
▪  But, the worst case seldom happens.

§  A divide-and-conquer recursive algorithm
¡  Video of selection vs quicksort: http://

youtu.be/cVMKXKoGu_Y

8

¡  Divide step:
§  Pick any element (pivot) v in S
§  Partition S – {v} into two disjoint groups
 S1 = {x ∈ S – {v} | x <= v}
 S2 = {x ∈ S – {v} | x ≥ v}

¡  Conquer step: recursively sort S1 and S2

¡  Combine step: the sorted S1 (by the time
returned from recursion), followed by v,
followed by the sorted S2 (i.e., nothing extra
needs to be done)

v

v

S1 S2

S

To simplify, we may assume that we don’t have repetitive elements,
So to ignore the ‘equality’ case!

¡  Other	computations	have	running	time	
§  proportional	to	n3	–	matrix	multiplication	
§  proportional	to	n4	

§ …	
¡  All	of	them	are	lumped	together	as	
“polynomial	time	computations”	
§  Considered	to	be	realistic	…	a	person	can	wait		
§  Polynomial,	but	not	linear	…	get	a	computer	
person	to	help	develop	your	solution	

© 2010 Larry Snyder, CSE 12

A.  Time proportional to N2

B.  Time proportional to N*log(N)

¡  This	one	you	can	give	different	parameters	for	
the	number	of	things	to	sort,	speed	of	
animation	etc.	
http://www.cs.oswego.edu/~mohammad/
classes/csc241/samples/sort/Sort2-E.html	

§  This	one	has	a	‘dancing	animation’	of	quick	
sort.	
Hungarian	Folk	Dance	Quick	Sort	http://
www.youtube.com/watch?v=ywWBy6J5gz8	

There	are	more	complex	computations	…	
Suppose	you	want	to	visit	28	cities	in	the	US	(for	a	
concert	tour?)	and	you	want	to	minimize	how	much	
you	pay	for	airplane	tickets	

You	could	select	an	ordering	of	cities	(SEA	à	PDX	à	
SFO	à	LAX	…)	and	compute	the	ticket	price.	

Then	pick	another	ordering	(SEA	à	SFO	à	LAX	à	
PDX	…),	compute	this	ticket	price	and	compare	to	
the	previous	one		

Always	keep	the	cheapest	itinerary		
This	seems	very	dumb	…	isn’t	their	a	better	way?	

© 2010 Larry Snyder, CSE 15

¡  Actually,	no	one	knows	a	way	to	solve	this	
problem	significantly	faster	than	checking	all	
routes	and	picking	the	cheapest	…		

¡  Not	polynomial	time	…	guessing,	No	Poly	sol’n	
¡  This	is	an	NP-Complete	problem	

§ Many	many	related	problems	…	the	best	solution	is	
“generate	and	check”	
▪  Best	way	to	pack	a	container	ship	
▪  Most	efficient	scheduling	for	high	school	students’	classes	
▪  Least	fuel	to	deliver	UPS	packages	in	Washington	
▪  Fewest	public	alert	broadcast	stations	for	US	

© 2010 Larry Snyder, CSE 16

¡  Although	there	are	thousands	of	NP-Hard	
Problems,	meaning	they’re	basically	
“generate	and	check”	…	

¡  NP-Complete	computations	(like	traveling	
salesman)	have	the	property	that	if	any	one	of	them	
can	be	done	fast	(nx-time,	say)	then	EVERYONE	of	
the	related	problems	can	be	too!	

¡  Is	Traveling	Salesman	solvable	in	nx	time	is	one	of	
the	great	open	questions	in	computer	science	

© 2010 Larry Snyder, CSE 17

Be	Famous	…	Answer	This	Question	

What	is	the	time	complexity	of	finding	an	item	
in	an	unsorted	list?	

A.  Less	than	linear	(log(n)	or	constant)	
B.  Linear	
C.  Polynomial	but	more	time	than	linear	
D.  NP	(exponential	like	2n)	

18

¡  Some	problems	are	too	big	–	combinatorial	
explosion	–	like	checking	each	chess	game	to	
see	if	there	is	a	guaranteed	win	for	White	
§  Too	many	items	to	check		
§  Doable	in	principle,	however	

© 2010 Larry Snyder, CSE 19

¡  One	problem	that	has	a	clear	specification	
but	can’t	be	solved	is	

¡  This	seems	pretty	easy	…	though	running	it	
won’t	work	because	it	might	not	stop	…	but	
maybe	analysis	could	find	any	errors	

© 2010 Larry Snyder, CSE 20

Halting	Problem	

Decide, given a program P and
input Q whether P(Q), that is, P
run on input Q, will eventually
stop running and give an answer

¡  The	halting	problem	cannot	be	solved	
¡  “This	statement	is	false.”	True	or	false?	
¡  Here’s	why	…	

§  Suppose	(for	purposes	of	contradiction)	that	some	
program	H(P,	Q)	answers	the	halting	problem	(will	
it	halt	and	give	an	answer)	for	program	P	on	data	Q	

§  Notice	the	question	is	not,	does	it	give	the	RIGHT	
answer	…	just	will	it	give	any	answer	

© 2010 Larry Snyder, CSE 21

		

12/1/17 © 2010 Larry Snyder, CSE 22

H(P, P)? Waste Time

Halt

n

y

An Odd Program, but what happens when we run R(R)
Two cases:
H(R,R) says yes, it halts but by the flowchart R(R) won’t halt
H(R,R) says no, it doesn’t halt but by the flowchart R(R) halts
Therefore, H cannot exist!

ý
ý

¡ We	have	analyzed	the	complexity	of	
computations,	and	learned	…	
§ Many	computations	have	time	proportional	to	n	
§ Many,	like	sort,		have	running	time	proportional	to	
n2	

§  Others	have	running	time	proportional	to	n3,	n4,	…	
§  Some	computations	are	computable	in	principle	
but	not	in	practice:	NP-complete	

§  Some	things	cannot	be	computed	at	all,	such	as	
the	Halting	Problem	

© 2010 Larry Snyder, CSE 23

What	is	the	time	complexity	of	finding	an	item	
in	a	sorted	list?	

A.  Less	than	linear	(log(n)	or	constant)	
B.  Linear	
C.  Polynomial	but	more	time	than	linear	
D.  NP	(exponential	like	2n)	
E.  Unsolvable	(like	the	halting	problem)	

24

¡  The	complexity	of	an	algorithm	gives	an	
estimate	of	the	running	time	increases	as	the	
size	of	the	input	to	the	algorithm	increases.	

¡  Good	complexities	are	log(n),	linear,	or	
polynomial	with	small	degree.	

¡  Problems	that	have	exponential	times	cannot	
be	solved	optimally	for	large	inputs.	

¡  Some	problems	cannot	be	answer	(e.g.	the	
Halting	Problem).	

¡  It	is	important	to	understand	the	complexity	
so	you	don’t	try	and	do	the	impossible.	

25

