How do computers compute?

Representing data

- Representing all data with Is and 0s, on/off, true/false
- Numbers -> binary (positional like decimal)
- Letters/symbols -> ASCII, Unicode, UTF8

Positional Notation

- Binary numbers, like decimal numbers, use place notation

$$
\begin{aligned}
1101 & =1 \times 1000+1 \times 100+0 \times 10+1 \times 1 \\
& =1 \times 10^{3}+1 \times 10^{2}+0 \times 10^{1}+1 \times 10^{0}
\end{aligned}
$$

except that the base is 2 not 10

$$
\begin{aligned}
1101 & =1 \times 8+1 \times 4+0 \times 2+1 \times 1 \\
& =1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}
\end{aligned}
$$

Base or radix

1101 in binary is 13 in decimal

Binary to Decimal

- What is the decimal equivalent of the binary number IOOII?
- A. II
- B. 12
- C. 13
- D. 18
- E. 19

Decimal to Binary

- What is the binary representation of the decimal value 2I?
- A. 10010
- B. 10100
- C. IOIOI
- D. 10110
- E. IOIII

Binary combinations, True/False possibilities

- One bit - Three bits - Four bits
- 0
- 000
- 0000
- 1000
- 001
- 0001
- 1001
- 010
- 0010
- 1010
- Two Bits
- 00
- 011
- 0011
- 1011
- 100
- 0100
- 1100
- 01
- 10
- 101
- 110
- III
- 0101
- 1101
- 0110
- 1110
- 0111
- |l||

Binary Addition

$$
\begin{array}{rrrr}
0 & 0 & 1 & 1 \\
+0 & \underline{+1} & \underline{+0} & \underline{+1}
\end{array}
$$

Binary Addition

001101
 $+010111$

Binary Addition

011101
 $+010011$

A. 101010
B. 110101
C. 110000
D. 111000
E. 101101

Bytes

A byte is eight bits treated as a unit

- Adopted by IBM in 1960 s
- A standard measure ever since
- Bytes encode the Latin alphabet using ASCII -- the American Standard Code for Information Interchange

ASCII

ASCII	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	1 1 1 1
0000	N_{u}	s_{H}	s_{x}	${ }^{\text {E }}$ x	E_{T}	E_{Q}	A_{k}	B_{L}	B_{s}	H_{T}	$L_{\text {F }}$	${ }^{\text {r }}$	F_{F}	c_{R}	s_{0}	s_{1}
0001	D_{L}	D_{1}	D_{2}	D_{3}	D_{4}	N_{K}	s_{V}	E_{Σ}	c_{N}	$\mathrm{Em}_{\text {M }}$	$\mathrm{S}_{\text {B }}$	E_{c}	$\mathrm{F}_{\text {s }}$	G_{s}	$\mathrm{R}_{\text {S }}$	u_{s}
0010		!	"	\#	\$	\%	\&	'	()	*	+	,	-	.	/
0011	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0100	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
0101	P	Q	R	S	T	U	V	W	X	Y	Z	[\backslash]	\wedge	-
0110	-	a	b	C	d	e	f	9	h	i	j	k	1	m	n	\bigcirc
0111	p	q	r	S	t	u	V	W	X	Y	Z	\{	\|	\}	\sim	D_{T}
1000	${ }^{8}$	${ }_{1}$	8_{2}	83	${ }^{1} \mathrm{~N}$	N_{L}	s_{s}	$\mathrm{E}_{\text {S }}$	$\mathrm{H}_{\text {s }}$	H_{J}	${ }^{\text {r }}$	P_{D}	${ }^{\text {P }}$ v	R_{1}	s_{2}	s_{3}
1001	${ }^{\text {c }}$	P_{1}	P_{z}	S_{E}	${ }^{\text {c }}$	M_{M}	s_{p}	E_{p}	o_{8}	a_{0}	$\mathrm{O}_{\text {A }}$	c_{s}	s_{T}	o_{s}	P_{M}	A_{p}
1010	${ }^{\text {a }}$ O	i	¢	£	ㅇ	¥	!	§	..	(C)	O^{*}	«	ᄀ	-	(R)	-
1011	-	\pm	2	3	-	μ	\dagger	-		1	-	"	1/4	1/2	3/4	¿
1100	A	Á	Â	Ã	Ȧ	Å	厌	Ç	E	E	\hat{E}	E	İ	İ	$\hat{\mathrm{I}}$	İ
1101	\pm	N	○	O	Ô	O	Ö	\times	\varnothing	Ù	U'	\hat{U}	Ü	Y'	P	β

$01000111|01101111| 00100000|01010011| 01101100|01110101| 01100111 \mid 01110011$

ASCII

What is the first letter of the message at the bottom?
A. G
B. t

ASCDI	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	1 1 1 1
0000	N_{u}	s_{H}	s_{x}	${ }^{\text {Ex }}$	E_{T}	E_{0}	${ }^{\text {k }}$	${ }_{\text {B }}$	$\mathrm{B}_{\text {s }}$	${ }_{T}$	$L_{\text {F }}$	${ }_{\text {v }}$	F_{F}	c_{R}	so	s_{1}
0001	D_{L}	o_{1}	O_{2}	D_{3}	D_{4}	N_{k}	s_{v}	E_{E}	${ }^{\text {c }}$	E_{M}	s_{B}	E_{c}	F_{s}	$\mathrm{c}_{\text {s }}$	$\mathrm{R}_{\text {s }}$	u_{s}
0010		!	"	\#	\$	\%	\&	'	()	*	+	,	-		/
0011	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0100	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	\bigcirc
0101	P	Q	R	S	T	U	V	W	X	Y	Z	[\backslash]	\wedge	-
0110	-	a	b	C	d	e	f	9	h	i	j	k	1	m	n	\bigcirc
0111	p	q	r	S	t	u	v	w	x	Y	z	\{	\|	\}	\sim	${ }_{\text {D }}$
1000	8_{0}	8_{1}	8_{2}	8_{3}	${ }^{\text {IN }}$	N_{L}	$\mathrm{s}_{\text {s }}$	$\mathrm{E}_{\text {S }}$	H_{s}	${ }_{\mathrm{H}}$	$\mathrm{r}_{\text {s }}$	P_{D}	P_{v}	${ }_{\text {R }}^{1}$	s_{2}	s_{3}
1001	${ }^{\text {c }}$	P_{1}	P_{z}	S_{E}	c_{c}	M_{m}	s_{p}	E_{p}	O_{8}	0_{0}	0_{A}	$\mathrm{c}_{\text {s }}$	s_{T}	$\mathrm{o}_{\text {s }}$	${ }^{\text {P }}$ M	A_{P}
1010	${ }^{\text {A }}$	i	¢	£	¢	玨	!	§	.	($0 \times$	"	\neg	-	®	
1011	。	\pm	2	3	,	μ	1	.		1	-	"	1/4	1/2	$3 / 4$	¿
1100	A	Á	Â	A	A	A	E	Ç	E	É	E	E	I	I	\hat{I}	I
1101	Đ	$\tilde{\mathrm{N}}$	-	O	Ô	Õ	O	\times	\varnothing	U̇	Ú	Û	Ü	Y	P	β

$01000111|01101111| 0010$ 0000|01010011|01101100|0111 0101|01100111|0111 0011

Uniform

Transformation
Format for bytes
（UTF－8）is
universal ．．．all
characters have a
place：1－4 Bytes

لماذا لا يتكلمن اللّغة العربية فحسب؟
Защо те просто не могат да говорят български？
Per què no poden simplement parlar en català？ 4
他們爲什麼不說中文（台灣）？团 4
Proč prostě nemluví česky？
Hvorfor kan de ikke bare tale dansk？
Warum sprechen sie nicht einfach Deutsch？（4）

Why can＇t they just speak English？
¿Por qué no pueden simplemente hablar en castellano？（4）
Miksi he eivät yksinkertaisesti puhu suomea？
Pourquoi，tout simplement，ne parlent－ils pas français ？（4）
למה הם פשוט לא מדברים עברית？
Miért nem beszélnek egyszerűen magyarul？
Af hverju geta peir ekki bara talað íslensku？
Perché non possono semplicemente parlare italiano？ 4
なぜ，みんな日本語を話してくれないのか？团
세계의 모든 사람들이 한국어를 이해한다면 얼마나 좋을까？园
Waarom spreken ze niet gewoon Nederlands？ 4
Hvorfor kan de ikke bare snakke norsk？
Dlaczego oni po prostu nie mówią po polsku？ 0

（Unicode has space for over 1 million symbols）

Porque é que eles não falam em Português（do Brasil）？
Oare ăştia de ce nu vorbesc româneşte？
Почему же они не говорят по－русски？
Zašto jednostavno ne govore hrvatski？
Pse nuk duan të flasin vetëm shqip？
Varför pratar dom inte bara svenska？ 4 ทำไมเขาถึงไม่พูดภาษาไทย
Neden Türkçe konuşamıyorlar？

UTF-8

Bits of code point	First code point	Last code point	Bytes in sequence	Byte 1	Byte 2	Byte 3	Byte 4
7	U+0000	U+007F	1	0xxxxxx			
11	U+0080	U+07FF	2	110xxxx	10xxxxx		
16	U+0800	U+FFFF	3	1110xxxx	10xxxxx	10xxxxx	
21	U+10000	U+1FFFFF	4	11110xxx	10xxxxx	10xxxxx	10xxxxxx

UTF-8

Bits of code point	First code point	Last code point	Bytes in sequence	Byte 1	Byte 2	Byte 3	Byte 4
7	U+0000	U+007F	1	0xxxxxxx			
11	U+0080	U+07FF	2	110xxxx	10 xxxxxx		
16	U+0800	U+FFFF	3	1110xxxx	10xxxxxx	10xxxxx	
21	U+10000	U+1FFFFF	4	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

What is the first Unicode value represented by this sequence? IIIOIOIO I00000II I0000III 00IIIIII IIO000II I0000000
A. 0000000001101010
B. 0000000011101010
C. 000000101000011I
D. 1010000011000111

UTF-8

Bits of code point	First code point	Last code point	Bytes in sequence	Byte 1	Byte 2	Byte 3	Byte 4
7	U+0000	U+007F	1	0xxxxxxx			
11	U+0080	U+07FF	2	110xxxxx	10xxxxx		
16	U+0800	U+FFFF	3	1110xxxx	10xxxxxx	10xxxxxx	
21	U+10000	U+1FFFFF	4	11110xxx	10xxxxxx	10xxxxx	10xxxxx

How many Unicode characters are represented by this sequence? IIIOIOIO I00000II I0000III 00IIIIII IIO000II 10000000
A. 1
B. 2
C. 3
D. 4
E. 5

But how do they compute?

- Basic operations are arithmetic, compare, read/write memory, test and jump (to a different memory location for the next instruction).

Fundamental units of computers: Logic Gates

NOT

Truth Table for And (using True and False)

P	Q	P and Q	
True			
True	True	False	True
False	Frue	False	
False		False	

Truth Table for And (using 0 and I)

P	Q	P and Q
1	1	
1	0	
0	1	
0	0	

Truth Table for Or (using 0 and I)

P	Q	P or Q
1	1	
1	0	
0	1	
0	0	

Truth Table for Not And (using 0 and I)

P	Q	PAND Q	NOT (PAND Q)
I	1	1	0
I	0	0	1
0	I	0	1
0	0	0	1

(NOT P) OR (NOT Q) vs. NOT (P AND Q)

P	Q	NOT P	NOT Q	PAND Q	NOT (PAND Q)	(NOT P) OR (NOT Q)
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

(NOT P) OR (NOT Q) vs. NOT (P AND Q)

P	Q	NOT P	NOT Q	P AND Q	NOT (PAND Q)	(NOT P) OR (NOT Q)
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

- NOT ($\mathrm{P} \wedge \mathrm{Q}$) = NOT P V NOT Q
- This is DeMorgan's Law of Boolean Algebra

P and Q or R

- What is P and Q or R if P is true, Q is false, and R is true?
- A. True
- B. False

There are 10 types of people in this world, those who know binary, and those who do not.

Exclusive-OR ==XOR

- Consider two propositions, either of which may be true or false
- Exclusive-or is the relationship between them when JUST ONE OF THEM is true.
- It EXCLUDES the case when both are true,so exclusive-or of the two is...
- False when both are true or both are false, and true in the other two cases.

Truth Table for XOR
(using 0 and 1)

P	Q	$P \times o r Q$
1	1	
1	0	
0	1	
0	0	

What would you ever want XOR for anyway?

- http://en.wikipedia.org/wiki/Adder (electronics)
- Binary Addition

Summary: It All Works Because of Digital

- Key principle: information is represented as simply the presence or absence of a phenomenon at a given place and time!
- Phenomenon in computers: Electrical output on a line
- Hole in punch card, early example.
- Logic Gates
- Charge on line
- No charge

